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Introduction 
 In vivo MRS can be performed along with MRI to measure metabolic properties of 
tumors. MRS has proven its value as a research tool for elucidating metabolic and biochemical 
aspects of cancer.  In addition, in vivo MRS holds much promise for becoming an indispensable 
clinical tool for detecting, diagnosing, and monitoring responses to therapies in patients. Well 
known examples of the latter include the use of MRS to improve the accuracy in differentiating 
between malignant and benign lesions and to detect an early response to a chosen therapy. At 
present, a growing number of radiologists as well as oncologists are interested in incorporating 
MRS into their MRI protocols. This article introduces 1H MRS of cancer, discusses current 
methods and technical issues, and describes some of the more common applications to cancer.  
Although in vivo MRS has been used to study cancers in many different parts of the body, the 
greatest progress in the development and validation of MRS has occurred mainly for three types 
of cancer:  brain, breast, and prostate. Thus, the present discussion will focus mainly on these 
cancers, although promising results have been obtained in pilot 1H MRS studies of cancers in 
other sites, including extracranial lymphoma and germ cell tumors [1], hepatic tumors [2], head 
and neck tumors [3], melanoma, and lymph nodes [4]. 

Altered 1H metabolites in cancer 
 Malignant tissues have unique spectral features that distinguish them from normal tissues.  
Many of the metabolite resonances present in the normal host tissues are absent or decreased in 
malignant lesions. For example, resonances from polyamines and citrate (Cit), which are 
hallmarks of normal healthy and benign hyperplastic prostatic tissues, are absent or substantially 
reduced in prostate cancers.  Likewise, resonances from N-acetylaspartate (NAA), a neuronal 
marker, are typically reduced in brain tumors. Total creatine (tCr), an indicator of bioenergetic 
status, is another resonance that typically has altered intensity in cancers. Other hallmarks of 
cancer include increased levels of choline-containing compounds (tCho), mobile lipids, and 
lactic acid.  Due to their importance in cancer, each of these compounds is discussed in further 
detail below. 

Choline compounds 
 Numerous in vivo, ex vivo, and in vitro studies have demonstrated elevated levels of tCho 
in neoplastic tissues and cells. In vivo 1H spectra of cancerous lesions typically display a 



prominent resonance from choline compounds at 3.2 ppm. Ex vivo studies have been performed 
to identify the different choline compounds giving rise to this resonance. In breast cancer, high-
resolution 1H spectra acquired from biopsy tissues have shown that the 3.2 ppm resonance is 
actually a superposition of several resonances [5-7]. The primary constituents are those with a 
trimethylamine moiety [ +

2 2 3 3R-(CH ) -N -(CH ) ], including free choline (Cho), phosphocholine 
(PCho), and glycerophosphocholine (GPC). Other metabolites possibly contributing include 
taurine, glucose, phosphoethanolamine, and myo-inositol (mIns) [7]. The choline head groups 
associated with semi-mobile lipids may also contribute. These resonances can be separated in ex 
vivo studies with high-resolution NMR spectrometers, but in vivo, these peaks are substantially 
broadened, and at fields as high as 4 Tesla these resonances are generally indistinguishable. 
Consequently, the simplified approach used in in vivo studies is to treat the 3.2 ppm spectral peak 
as a single resonance, and thus it is referred to as tCho (total choline-containing compounds). 
 The precise mechanisms that produce elevated tCho levels in cancers are as yet not fully 
understood. A working hypothesis is that elevated tCho is an indicator of increased cellular 
proliferation [8, 9]. Indeed, the largest component contributing to the tCho peak from neoplastic 
tissue is usually PCho, a known precursor of membranes. Another major component, GPC, is a 
breakdown product of membranes. It is known that tCho levels can be modulated by numerous 
changes in enzymatic activity and fluxes in these anabolic and catabolic pathways [10, 11], and 
the increased tCho level in neoplastic tissues may reflect increased membrane turnover in 
neoplastic tissues. In the author’s opinion, the present understanding of elevated tCho in 
malignant cells remains an oversimplified view, and further research is needed to obtain a 
complete picture of the biological processes leading to elevated tCho.  It can be expected that 
MRS will likely play a vital role in elucidating these processes.  

Lipids 
 Resonances from mobile lipids can be observed in 1H spectra of breast [12], brain [13], 
and prostate tumors [14]. The amplitude of the lipid resonance can vary dramatically depending 
on the tissue heterogeneity. Lipid peaks in tumor spectra can arise from sources other than 
normal adipose tissue.  For example, resonances from mobile lipids have been shown to occur in 
necrotic tissues [15]. Furthermore, experimental data from in vitro cell studies suggest the 
formation of intracellular lipid droplets are a source of lipid resonances [16]. In studies of T-cell 
lymphoblast cultures, a correlation between the methylene-to-methyl signal ratio and number of 
apoptotic cells was found [17]. In accordance with this finding, lipid levels were found to 
correlate with apoptosis and early cell death in rat BT4C gliomas [18]. The presence of elevated 
lipid resonances in human astrocytic tumors has been suggested to have prognostic significance [19].   
 In human breast, the adipose tissue which is not directly involved in the carcinoma can 
pose significant problems for in vivo 1H MRS. When trying to choose the volume-of-interest 
(VOI) for localized MRS studies of breast cancer, any adipose tissue inadvertently included in 
the VOI creates a partial volume effect, reducing the effective volume for spectroscopy. 
Likewise, in studies of prostate and brain tumors, it is very important to suppress intense signals 
from adipose tissues which surround the prostate and brain, in order to avoid spectral 
contamination (“bleed effect”) and artifacts (e.g., baseline distortion). Adipose tissue also limits 
the ability to optimize (or “shim”) the homogeneity of the magnetic field inside the VOI, which 
in turn leads to broad resonances and reduced signal-to-noise ratio. Intense lipid resonances can 
also produce sideband artifacts which can interfere with MRS measurements [20]. These 
artifactual resonances can be larger than the tCho resonance. To reduce sideband artifacts, our 



group uses a method called echo-time (TE) averaging, which causes coherent cancellation of 
sideband artifacts by averaging spectra acquired at several different TE values [20].  

Lactate 
 Under hypoxic conditions, neoplastic cells are thought to derive energy primarily from 
glycolysis.  Even in the presence of oxygen, malignant lesions can have an increased glycolytic 
metabolism. Many investigations of experimental tumors have provided evidence of reduced 
respiratory capacity and increased reliance on glycolysis for energy production.  Consequently, 
the concentration of lactate in tumors is generally higher than that in normal tissues. In single-
voxel 1H MRS measurements on normal human brain the lactate concentration was ~0.6 
mmol/kg [21], whereas in untreated human brain tumors the lactate levels were found to be 2.6 ± 
0.8 mmol/kg (mean ± S.D., n=7) [22]. In studies of rat C6 glioma, we observed a positive 
correlation between the tumor lactate levels measured by in vivo 1H MRS and the neoplastic cell 
density determined by histopathology [23]. Of interest, ex vivo studies (non-MRS) have revealed 
a positive correlation between the incidence of metastasis and the mean lactate concentration in 
biopsy specimens of cervical and head and neck tumors [24, 25].    

Applications 

Breast Cancer 
 The first in vivo MRS studies of breast measured resonances from 31P nuclei. These 
studies showed that measurable variations in phospholipid metabolism could be detected and 
used for diagnosing cancer and monitoring response to treatment (reviewed in [26, 27]). More 
recently, there has been growing interest in breast cancer research using 1H MRS, due to its 
higher sensitivity than 31P MRS. The first breast 1H MRS reports focused on the diagnostic 
utility of the water:fat ratio in the breast [28-30], but subsequent studies did not find this ratio to 
be a useful diagnostic metric [31, 32]. However, a number of studies performed with 1H MRS 
noted the presence of tCho in spectra of malignant lesions, but not in benign or normal tissues 
[29, 31-36].  
 The majority of breast MRS studies to date have used single-voxel spectroscopy (SVS) to 
localize the spectrum to a single volume centered on the lesion of interest. While most breast 
MRS studies have been done with SVS, other researchers have explored the use of spectroscopic 
imaging (MRSI) as an alternative [37]. With MRSI, a grid of spectra are acquired. MRSI has an 
important advantage – it provides information about the spatial distribution of metabolites, which 
is useful for studying multiple lesions or evaluating the spatial variation of a metabolite in a 
heterogeneous lesion. However, MRSI for breast is technically more challenging than SVS and 
quantification of metabolite levels is more problematic.  For these reasons, most MRS research 
on breast cancer has used SVS. Figure 1 shows a representative example of a single-voxel 1H 
spectrum of an invasive ductal carcinoma, with the tCho resonance indicated.  
 
 



 
Figure 1 - Example of a localized breast 1H spectrum of human breast acquired at 4 Tesla. The fat-
suppressed, dynamic contrast-enhanced MR image (sagittal view) on the left shows the location of the 
VOI (red box), which covers a rim-enhancing invasive ductal carcinoma. The water-suppressed spectrum 
on the right shows the resonances observed in this malignant breast lesion. 
 
 While a number of groups have had success using the detectability of tCho to indicate 
malignancy, this approach assumes that the MRS measurement sensitivity is roughly constant 
from one measurement to the next. However there are a number of factors which make this 
assumption questionable in breast MRS, such as variations in voxel size, adipose tissue content, 
and coil sensitivity. In our experience at 4 Tesla, we have found that these factors produce a 
large variation in sensitivity [38]. Thus, some form of quantification should be used to correct for 
sensitivity variations, or at the very least exclude those voxels with unusual sensitivity.  

A variety of approaches have been used for quantifying MRS data. We chose to use the 
intravoxel water resonance as an internal reference, because this method is robust and 
automatically compensates for variations in many factors [38]. Some groups have proposed 
using an external standard for referencing [31, 39]. This approach also works, but requires 
additional corrections for voxel size, adipose tissue content, and coil efficiency. Both internal 
and external referencing methods need correction for differences in relaxation rates which are 
difficult to measure in individual subjects.  

A typical breast MRS study is performed immediately after acquiring dynamic contrast-
enhanced (DCE) MR images. Decisions about the placement of the MRS voxel are usually based 
on review of the lesion morphology and the kinetics of contrast agent uptake while the patient is 
still in the magnet. With SVS, the placement of the voxel is of critical importance. The voxel 
should be placed so that it contains as much of the lesion as possible while excluding other 
tissues such as normal fibroglandular or adipose tissue. In studies using quantitative 1H MRS to 
monitor response to treatment, the voxel size and position can be adjusted to cover the same 
anatomical region of the tumor and the voxel size is decreased as the tumor shrinks.  
 The first and most studied application for breast MRS is to distinguish benign from 
malignant lesions prior to biopsy. The first published paper on this topic, by Roebuck et al. in 
1998 [31], proposed the idea that tCho could be used as a marker of malignancy. A number of 
papers that followed continued to use this hypothesis, but performed studies with somewhat 
different techniques. The overall results are quite consistent. Katz-Brull et al. published a 
combined analysis of the first five publications and reported an overall sensitivity of 83% and 



specificity of 85% [40]. These results are very encouraging, especially considering that the 
determination of malignancy was done without considering any other diagnostic or historical 
information that would normally be available clinically.  
 Other publications describing tCho detection in breast cancers did not report diagnostic 
specificity and sensitivity [30, 32]. While the results using a simple detectability hypothesis are 
encouraging, it seems likely that there are benign pathologies that also produce detectable levels 
of tCho. Indeed, at 1.5 Tesla, a detectable tCho resonance has been reported in fibroadenomas 
[33, 34, 37, 41], tubular adenomas [31, 35], and lactating subjects [33, 36].  

Two recent studies have aimed to evaluate whether MRS can improve the specificity of a 
diagnostic breast MR exam. Huang et al. appended a single-voxel MRS measurement and a 
single-slice T2

*-weighted perfusion measurement to a conventional DCE-MRI exam [41]. They 
found that the addition of MRS increased the specificity of the exam from 62.5% to 87.5%, and 
the further addition of the perfusion measurement raised the specificity to 100%. Our group 
recently performed a retrospective blinded observer performance study with four readers and 55 
subjects to determine if quantitative MRS could improve the specificity and sensitivity of a 
DCE-MRI exam [42]. In this study, we reported that adding quantitative MRS results to a DCE 
MRI exam produced improvements in the sensitivity, specificity, and accuracy for all readers, 
and improved the inter-observer agreement between the readers. 
 A second promising application of breast MRS involves predicting response to treatment. 
Current clinical methods such as palpation and imaging rely on changes in tumor size, which 
typically take several weeks before any changes are detectable. Breast MRS, in contrast, detects 
changes in intracellular metabolism that would occur before any gross morphological change. 
The first report using tCho measurements to detect treatment response in breast cancer was by 
Jaganathan et al., who observed that the tCho resonance disappeared or became smaller in 89% 
of subjects undergoing chemotherapy [36]. Expanding on this observation, our group performed 
a study designed to determine whether changes in tCho concentration ([tCho]) could provide a 
biomarker of clinical response as soon as 24 hours after the first dose of doxorubicin-based 
chemotherapy for locally-advanced breast cancer [43]. Of the first 13 patients who successfully 
completed the protocol without technical problems, the change in [tCho] between baseline and 
24 hours after the first dose of chemotherapy showed significant positive correlation (R=0.79, 
p=0.001) with the change in lesion size measured at the end of four cycles of chemotherapy. The 
change in [tCho] within 24 hours was significantly different between responders and 
nonresponders (p=0.007) classified using RECIST (Response Evaluation Criteria in Solid 
Tumors).  These results suggest that the change in [tCho] within 24 hours after the first dose of 
the drug can serve as an early indicator for predicting clinical response to treatment for locally-
advanced breast cancer.  

Prostate Cancer 
Unlike in breast applications, the suspicious regions in the prostate cannot be as easily 

localized with imaging and are typically multi-focal, necessitating the use of spectroscopic 
imaging instead of single voxel methods.  In order to cover the entire prostate while maximizing 
resolution and signal-to-noise, three-dimensional 1H MRSI is the method of choice.  To localize 
the volume of interest while minimizing chemical shift effects, point resolved spectroscopy 
(PRESS) is used in combination with high bandwidth outer-volume suppression (OVS) [44]. 
Minimizing the effects of periprostatic lipids is accomplished with spatially and spectrally 



selective RF pulses [45] or with the inclusion of spectrally selective suppression RF pulses [46-
48].  

Cancer in the prostate is characterized by increased tCho and decreased Cit levels.  The 
decrease in citrate results from both a change in normal epithelial cell function and loss of ductal 
structure, while increased tCho levels, although not fully understood, may be due to increased 
cellular proliferation and density.  Thus the ratio tCho/Cit is doubly sensitive to the abnormal 
metabolism, cellular function and morphology observed in cancer.  As it is difficult in many 
instances to separate the resonances of tCho and tCr the ratio is typically reported as 
(tCho+tCr)/Cit. 

Metabolic information provided by spectroscopic imaging has shown promise in 
targeting biopsy [49], following response to therapy [50], treatment planning [51, 52] and cancer 
staging [53].  Zakian et al has recommended using the combination of the maximum ratio (tCho 
+ tCr)/Cit and the MR spectroscopic imaging tumor volume as an index to help predict tumor 
aggressiveness [54]. 
 

 
Figure 2 – T2-weighted axial MRI (left) and selected 1H spectra (right) from a patient with prostate cancer 
(Gleason score 6).  The anterior part of the left peripheral zone has normal spectra (solid line) and is 
bright on the MR image, while the posterior par has cancerous spectra (dotted line).  Reproduced from 
Noworolski et al, Magn. Reson. Med. 53:249-255 (2005). 
 

Brain Tumors 
Several early studies have suggested a role for in vivo 1H MRS in helping to diagnose and 

monitor treatment response in brain tumors [55-60]. More recent publications have convincingly 
shown the value of 1H MRSI in the clinical management of brain tumor patients in a number of 
areas. These include characterizing and classifying tumors [61], identifying tumor in T2-
hyperintense regions that did not display enhancement with Gd-contrast injection [62], 
differentiating cerebral necrosis from tumor progression [63, 64], monitoring treatment response 
[65-68], and predicting prognosis [69]. Similar to the prostate, 3D 1H MRSI is generally 
considered to be the method of choice for evaluating brain tumors.   



As compared to normal brain, common distinguishing spectral features of brain tumors 
include decreased levels of NAA and tCr, and elevated levels of tCho, lactate and lipids.  The 
level of mIns, an astrocytic marker and putative osmolyte, has been reported to be elevated in 
hemangiopericytomas [70].     

 
Figure 3 – Spoiled gradient-echo image (left) showing the placement of the PRESS-selected box and the 
MRSI grid used to obtain full coverage of the brain tumor mass.  The PRESS-selected box includes the 
subcutaneous lipid layer at the bottom-right corner.  By chopping the corner of the PRESS box using very 
selective OVS pulses (black line indicates edge of suppression band), contamination from mobile lipid 
signals arising in the scalp were avoided.  Elevated tCho levels occurred in the viable tumor regions, 
while the absence of metabolites in other regions was indicative of necrosis. Reproduced from Tran et al, 
Magn. Reson. Med. 43:23-33 (2000).  

Conclusions 
The quality and reliability of MRS data will only improve as 3 Tesla systems become more common and 
as further refinements in techniques and software occur. Based on the convincing results obtained from 
multiple institutions to date, it is clear that 1H MRS is destined to play a prominent role in the clinical 
management of cancer patients.  
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